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Senstng Water: First estimates of soll moisture from the Rongowai airborne remote sensing mission for GNSS-Reflectometry
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In a unique partnership, the Rongowai (“sensing water” in te reo Maori) airborne remote sensing mission comprises of a next-

generation Global Navigation Satellite System Reflectometry (GNSS-R) receiver (NGRx) mounted on a domestic Air New Zealand Q300

aircraft. The sensor captures reflected GNSS “signals of opportunity”, building on the legacy of novel space borne missions such as

CyGNSS (Ruf et al. 2012), and providing valuable data for the development of future missions such as HydroGNSS. During the aircraft’s Rongowai L1 data
routine scheduled operations, Rongowai autonomously records reflected GNSS signals, then transmits data via a cellular connection

once the aircraft has landed. The L-band GNSS radio signals which are reflected from the land surface are sensitive to soil moisture

(Kim and Lakshmi, 2018) and surface water (Gerlein-Safdi & Ruf, 2019), providing a valuable additional source of data for the terrestrial NAE o Soil gauge network used for
hydrosphere. Rongowai is enabling unprecedented high spatiotemporal resolution surface water and soil moisture estimates across moisture gauges Combined creating a training dataset
New Zealand's diverse landscapes. Here we present our progress towards the development of algorithms for soil moisture estimation . training .

! ) dataset
using Rongowal data.
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ing CyGNSS data at a near-global scale (Datta et al. 2022), we developed a machine learning (MERIT)
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Methods:
We built on the work of Datta et al. (2022) to develop a data assimilation framework for the processing of Rongowai Level 1 data
(Lin et al. 2022a) into higher level data products such as soil moisture. To develop a training dataset for machine learning, we first

Vegetation and land

adictor variables including terrain indices o (c_]Cf:;)miC”S' . _ _ combined Rongowai data (for all flights, 26 Oct. 2022 to 27 Sep. 2023) with soil moisture gauge observations from NIWA's Cliflo
ights derived from Esm?stf:r:m' : network (left). Observations were paired if the gauge location was contained within the estimated Rongowai Fresnel zone (Lin et al.
Dynamic variables 2022b), and with observations within 1 hour of the recorded signal. A total of 1302 matched Rongowai and soil gauge observations TEE

(MODIS, GPM)

were found. See an animation of a RongoWai flight here: A b
https://youtu.be/eS9OYEfJKcA

* :im 2:?:° = Co— The locations of the Rongowai specular points (and observation times for dynamic variables) were used to extract values from
—— predictor variables (below) for the pixels containing them, and the full dataset (1302 matches) was filtered to remove rows with

Rongowai L1 data:

Council gauges:

individual flight 3 o Continuous; 10 minute missing values, leaving complete data in 514 rows. These were split into 80% training (411 rows) and 20% testing (103 rows), and
- R used in a random forest model with 500 trees.
Predictor variables (covariates):
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