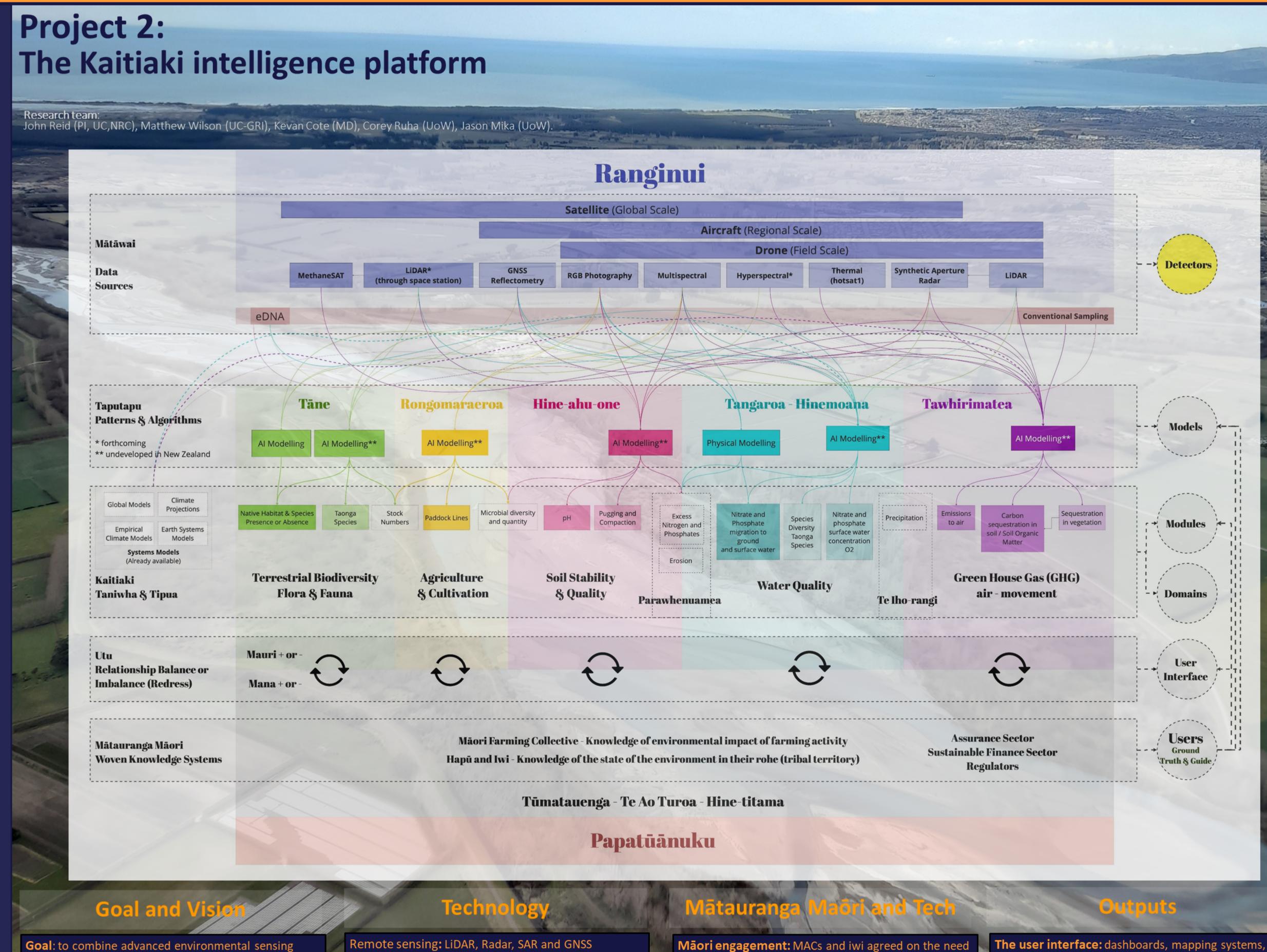
Co-developing Research in Geospatial Sciences: Experiences from a Research Institute in the Co-creation of Impactful Solutions with Indigenous Communities in Aotearoa New Zealand

Maria Vega Corredor,^{1,} Maria Rita Dionisio^{1,2}, John Reid³, Luke Parkinson¹, Dean Walker¹, Sharmila Savarimuthu¹, Kevan Cote^{1,4}, Riria McDonald⁵, Mokonuiarangi Kingi⁵, Corey Ruha², Matthew Wilson¹ and Jason Mika², (1) University of Canterbury, Geospatial Research Institute, Christchurch, New Zealand, (2) The University of Waikato, Hamilton, New Zealand, (3) University of Canterbury, Ngai Tahu Research Centre, Christchurch, New Zealand, (4) Moose Design, New Zealand (5) Te Manatōpū Hau Kāinga o Ōhinemutu, Rotorua, New Zealand

a narratives around Ngāwhās, as a way to reinfor

Mātauranga Māori for the younger generations.

Introduction:


Guided by the UN-SDGs and focused on generating innovative geospatial research, the Geospatial Research Institute Toi Hangarau is committed to developing, implementing, and facilitating the use and access to geospatial technologies for multiple sectors of New Zealand society. We partner with various groups, including Māori to co-design research that reflects Indigenous perspectives, related to the use and application of geospatial tools and methods for equitable outcomes. We strive to work with people and the environment in equitable ways, to ensure that they are key research beneficiaries.

hrough koromātua (sub-tribe), type, and

rough Atua (seven key spiritual guardians).

developing future research.

for high-quality environmental indicators. indigenous

Holistic Framing - Māturanga Māori, including primary

atua Papatuanuku (earth mother) and Ranginui (sky

father) and their 7 atua environmental descendants,

which health will be analysed. Holistic Measurement:

impacts of the human atua domain (Tūmatuenga) on

environmental knowledge. Al will support analysis and

other atua domains (the environment). Ground-

truthing and guiding AI: iwi and hapū historical

data interpretation guided by Mātauranga Māori.

knowledge will be used through three processes:

Reflectometry. Optical, multispectral, thermal, and

hyperspectral cameras. All used for analysis of taonga

species, biodiversity, carbon sequestration, methane

emissions, soil quality and moisture, erosion, water

on-ground, or in-situ, sensors, alongside conventional

biodiversity, such as eDNA, cameras trap, and acoustic

quality and flows and livestock management.

sampling techniques, are used for analysis of

sensors. Lysimeters for groundwater quality and

quantity assessment. All is used for analysis of large

data sets. Hydrological, climatic and environmental

modelling are used. Data visualisation using VR and AR

technologies with mātauranga Māori (Māori

constructing their own environmental sensing

choices, and the fulfil of kaitiaki (guardianship)

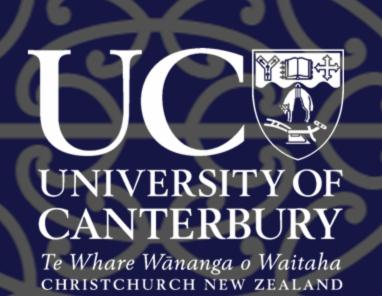
obligations.

knowledge) to design a state-of-the-art environmental

sensing platform that meets the needs, requirements,

and values of Māori Agribusiness Collectives (MACs)

Vision: to offer MACs and iwi a model, and process, for


platforms to guide environmental governance when

engaging with government, inform land management

processes related to urban regeneration.

Bicultural planning in NZ was reviewed.

rirtual reality, or augmented reality, will bring together

formation, allowing indigenous connections to place.

Modules & Domains: KIPs design comprises either

comprehensive picture of an environmental domain,

such as water quality, biodiversity, or Greenhouse Gas

Emissions which loosely correspond to atua domains.

Economic opportunities: Helping to reduce cost for

MACs, iwi, for environmental reporting or even to

market sustainable indigenous products.

ndependent modules or groups. A domain is made-up

uantitative information with local qualitative

of groups of modules that together provide a